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Abstract 0 A method is described which estimates (using least-squares 
analysis) all parameters (kinetic parameters and also zero and infinite 
time assays) from nonisothermal kinetic data. This method overcomes 
the time delays required for infinite time assays and biased estimates 
caused by the use of those assay results. Flexible temperature and data 
collection programs can he used. The mathematical models account for 
thermal volume expansion and the appropriate model is selected by 
statistical tests (provided the reaction is studied over -90% decomposi- 
tion). The models use a reparameterized Arrhenius equation in which 
the frequency factor is replaced by k , ,  the rate constant a t  a specified 
temperature. This improves the numerical procedure and allows room 
temperature stability to be estimated directly. 

Keyphrases 0 Kinetics-estimation of all parameters from noniso- 
thermal data Models, mathematical-estimation of all parameters 
from nonisothermal kinetic data 0 Drug stability-estimation from 
nonisothermal kinetic data 

Nonisothermal kinetic methods enable drug stability 
to be estimated a t  any temperature from a single test 
rather than multiple experiments as required by the tra- 
ditional isothermal approach. 

A logarithmic nonisothermal method has been proposed 
(1) as well as reciprocal (2), linear (3), polynomial (4), and 
stepped ( 5 )  temperature programs. Most methods have 
used manual and/or approximate procedures to estimate 
the kinetic parameters. .One method (6) employed nu- 
merical integration (trapezoidal method) within a non- 
linear, least-squares regression; however, this is only ap- 
plicable where dependent (concentration) and indepen- 
dent (time) variables can be separated in the model. 

All methods thus far have treated time zero and time 
infinity concentrations as known. When these parameters 
are not known to a precision greatly exceeding that of the 
data, then they should be estimated from the data (7). This 
also avoids the lengthy time delays necessary to determine 
values at infinity. Treating them as constants may lead to 

biased kinetic parameter estimates as in isothermal ex- 
periments (8) and confidence limits might be falsely re- 
duced (9). 

In addition to these limitations of current methods, the 
effect of thermal volume expansion has not been consid- 
ered. 

The present report develops a nonrestrictive, numerical 
treatment which allows flexible temperature and data 
collection programs, estimates of all parameters, and ac- 
counts for thermal volume expansion in nonisothermal 
solution kinetics. 

THEORY 

The general form of the rate equation for a nonisochoric system (10) 
is: 

-dMl/dt = (l/V’)u-l k 8 M,”l 0%. 1) 
1 = 1  

where uL is the exponent of the i th reactant, u is the reaction order (= u1 
+ u2 + . . . +u,), M ,  is the number of moles of the Ith reactant, V’ is the 
solution volume which is a function of time, and k is the rate constant. 

-dM,/dt = (l/V‘)U-l Ae-EIWT) if M , u ~  0%. 2) 

where A is the frequency factor, E is the apparent activation energy, R 
is the gas constant, and T is the absolute temperature. 

For a nonisothermal, nonisochoric system: 

, = 1  

From Eq. 2 the following apply: 

-dMlldt = Ae-E/(RT) V‘ zero-order (Eq. 3) 

-dMl/dt = Ae-E/(RT) M1 first-order (Eq. 4)  

-dMl/dt = Ae-E/(RT) M1 M1IV’ second-order (Eq. 5) 

It has been pointed out for isothermal kinetics (11) that if a reactant 
solution is prepared a t  room temperature and used at a different tem- 
perature, allowance should be made for thermal volume change. It is clear 
from Eq. 4 that  first-order reactions are exempt from this requirement, 
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Table I-Convergence Rate of MARQDT when Minimizing on 
k. and  E, or A and  E, for Typical First-Order Simulated 
Nonisothermal Data 

Iterations 
Initial Parameter Ehtimatesb 

k , ,  min-' E, kcal mole-' A ,  min-T a 
0.20 14.0 
0.20 16.0 
0.10 14.9 
0.33 14.0 
0.06 16.0 
0.06 14.0 
0.12 14.9 

0.37 5 >20 
10.70 6 >20 
0.84 2 5 
0.60 8 9 
3.20 5 >15 
0.11 5 >20 
1.01 4 9 

Parametric values are E = 15.0 kcalhole,  A = 1.0 X IO'Omin-', k. = 0.10096 
min-I, where k. is the rate constant at 25" and the linear temperature rogram 
range is 25-45'. For each test. the two models have the same initiarsurn of 
squares. 

since a volume term does not appear in the equation; however, pseudo 
first-order reactions for which Eq. 5, with Mp constant, is applicable, are 
not exempt. 

For nonisothermal experiments, the change in molar concentration, 
C', (C' = M/V') of a reactant is due to reaction and thermal volume 
change. For the case. where all samples are cooled to the same temperature 
(T,) before analysis, the measured concentration (C) is independent of 
thermal volume change, and C = M/V where V is the volume a t  T,. 

Since temperature and volume are functionally related to time [T = 
f l ( t ) ;  V' = V / / z ( t ) ] ,  Eqs. 3-5 can be rewritten as: 

-dCl/dt  = Ae-E/lRfl(r)l/f2(t) zero-order (Eq. 6) 

-dCI/dt  = Ae-E/IRIl(f)IC1 first-order (Eq. 7) 

-dCl /d t  = Ae-"/[Rfl(l)lCIC?fp(t) second-order (Eq. 8) 

where Cp is the concentration of Reactant 2 a t  volume V or the constant 
catalyst concentration a t  V in the pseudo first-order case. 

Model for Absorbance Measurement-If change in absorbance ( D )  
is used to follow the reaction and the following assumptions are made: 
(a) the reaction goes to completion; ( b )  the absorbance is the sum of 
component absorbances due to reactant, product, and constant back- 
ground; ( c )  all component absorbances obey the Beer-Lambert law; and 
( d )  the sum of the moles of reactant and moles of product is constant, 
then: 

C1 = ( D  - D - ) / [ ( a r  - aP)b]  (Eq. 9) 

(Eq.10) 

where DO and D ,  are the absorbances a t  zero and infinite times, respec- 
tively, and are constant, ar and ap are the absorptivities of reactant and 
product, respectively, b the cell path length, and Clo is the concentration 
of reactant 1 a t  time zero and T,. 

Recalling that for pseudo first-order reactions, Eq. 8 with Cz constant 
is applicable, then substituting Eq. 9 into Eqs. 6-8 yields: 

CIO = ( D O  - D,)/[(ar - ap)b]  

-dD/dt  = Ae-E/[Rfl(t)l (a, - a p )  b/ fp( t )  zero-order (Eq. 11) 

-dD/dt = Ae-E/lRfl(t)l ( D  - D,) first-order (Eq. 12) 

-dD/dt  = Ae-E/IRfI(f)] (I1 - D,) Cp f p ( t )  pseudo first-order 
(Eq. 13) 

-dD/dt = Ae-E/[Rfl(r)] ( D  - /2(t)/[(a, - a,,) b] second-order 
(Eq. 14) 

Similar equations can be derived for other situations where the sum of 
moles of reactant and moles of product is not constant. 

Equations 11-14 cannot be integrated analytically. However, they can 
be solved numerically (i.e., D values calculated a t  specified times) when 
initial values are supplied (i.e., D = DO a t  t = 0). 

For isothermal kinetics where f l ( t )  is constant, these equations can 
be integrated to give the familiar forms. For example, Eq. 12 yields: 

(Eq. 15) 

The parameters (DO, D,, A, and E for nonisothermal; Do, D,, and k 

D = D ,  + (DO - D,)e-kf 

for isothermal) are chosen so as to minimize Q. 1 6  

SS = 'kN (D,  - 6,)2 (Eq. 16) 
1-1 

Table 11-Parameter Estimates for Various Models Fit ted to 
Nonisothermal First-Order Simulated Data a 

Model 
Percent Pseudo First- Second- 
Reacted First-Order Order Order Zero-Order 

k 
18 0.0537 0 6 4 9  0.0063 0.1009 
54 0.0992 0.0988 0.0469 0.1111 
71 0.1002 0.0999 0.0605 0.1171 
87 0.1004 0.1001 0.0735 0.1258 
99 0.1002 0.1OoO 0.0866 0.1397 

E 
18 13.72 13.m 13.69 12.66 
54 14.71 14.76 16.26 7.57 
71 14.81 14.87 18.69 3.19 
87 14.89 
99 14.97 

~- .. ~~ ~ 

14.94 23.14 -2.91 
15.02 41.32 -22.69 

1.001 1.001 
1.001 1.006 

18 1 .oo 1 131 
54 1.001 1.001 
71 i.mi 
87 1.001 

~ ~~~ ~ ~.~ 

1.001 LOO0 1.012 
1.001 0.998 1.023 

99 1.001 1.001 0.988 1.057 
D ,  

18 -0.839 - lm8 -2.950 - 
54 0.031 0.030 -0.421 - 
71 0.045 0.044 -0.240 - 
87 0.049 0.049 -0.108 - 
99 0.050 0.050 0.020 - 

Parameters and constants used to generate the first-order data were k,, = 0.1 
hr-l, E = 15 kcdmole, Do = 1.0, I), = 0.05 with a linear temperature pro am over 
the range 25-45' in all cases. Also a, = 1. ap = 0, b = 1, with the rang:, error 
variance of 0.56 X 10-6. b The zero-order model has no D, term. 

where Di and Bi are observed and calculated absorbances, respectively, 
at the i th  datum, and N is the number of data. 

Computational Procedures-Temperature-Time Relationship 
fl(t)-For each data set, an orthogonal polynomial regression program, 
ORTHO (12), was used to establish the polynomial of lowest order which 
adequately described the temperature-time data. This enables flexible 
temperature programs to be employed. ORTHO uses the Gram-Schmidt 
orthonormalization procedure with an iterative straightening refinement 
(13). 

Volume-Time Relatiorwhip fZ(t)-Data for the specific volume ( Vip) 
of water a t  various temperatures are available (14). ORTHO was used 
to establish a polynomial relationship for this data over the experimental 
temperature range (30-92"), 

Kp = 0.99992806 - 0.35791641 X T (Eq. 17) 

h 

+ 0.72094751 X 

+ 0.21949816 X T4 - 0.47002556 X T5 
where T is degrees centrigrade for this equation only. All residuals about 
this regression were less than 7 X ml/g and were randomly distrib- 
uted. 

Since the relationship / l ( t )  was established for each data set, and the 
general relationship vnSp = f ( T )  (Eq. 17) is available, the volume-time 
relationship f p ( t )  was established for each set. 

Relationships T = f 1 ( t )  and Vnp = f ( T )  were used in the nonlinear re- 
gression program, MARQDT. 

Optimization Routine-The function to be minimized (Eq. 16) con- 
tains nonlinear parameters so an iterative least-squares regression is 
required. A nonlinear regression program (MARQDT) was developed 
for this purpose. The program uses the Marquardt algorithm (15) with 
minor modifications (12). The advantages of this method have been de- 
scribed previously (16). 

Initial estimates are required for the parameters. When these are not 
available from prior knowledge, satisfactory values can be obtained by 
one of the differential nonisothermal methods (17), provided thermal 
volume effects are neglected. These estimates are improved iteratively 
until the convergence test (the relative change in parametic estimates 
in consecutive iterations is less than 1 in lo4) is satisfied. 

Numerical Differentiation-The Marquardt algorithm requires 
partial derivatives with respect to each parameter a t  each datum. Since 
integrated functional equations are not available for nonisothermal ki- 
netics, the partial derivatives were estimated numerically. These were 
computed using the two-point central difference method. Choice of the 
step length has been discussed previously (18). 

T 2  - 0.42243321 X lo-' T 3  
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Table 111-Goodness of Fit Statistics for Various Models Fitted 
to Nonisothermal First-Order Simulated Data  a 

Percent 
Reacted 

Model 
Pseudo First- Second- 

First-Order Order Order Zero-Order 

18 
54 
71 
87 
99 

18 
54 
71 
87 
99 

106 Vrb 
0.56 0.56 0.56 0.55 
0.56 0.56 0.59 5.5 
0.56 0.56 0.72 21 
0.56 0.56 1.6 73 

NS NS S S 
NS NS S S 

See Table 11. * V, is the residual variance (it-., residual S S l d f )  and should be 
compared with the error variance of 0.56 X Probabilities (NS = not signif- 
icant at p = 0.01 level) for runs, mean square successive difference, and F tests were 
similar. 

Numerical Integration-A fourth-order Runge-Kutta method with 
error estimation and step size control was used in MARQDT for the so- 
lution of Eqs. 11-14 (19). The method has been tested extensively on a 
number of derivative functions and found to perform excellently provided 
relative rather than absolute truncation errors are used to control step 
size. 

was used for sum of 
squares ( S S )  calculations, and for partial derivative evaluations. 
This error in d; for SS calculations was about one-fiftieth of the random 
error in the data and so did not contribute significantly to the calculated 
SS value. Further decrease in the truncation error did not lead to sig- 
nificant changes in the parameter estimates but only increased compu- 
tational time. 

Initial values are required for a particular solution of a differential 
equation. In the present work these were D = Do at t = 0 with DO being 
treated as a parameter. 

Statistical Aspects-Goodness of Fit-The adequacy of the kinetic 
model was judged in two ways. First, the residuals were examined for 
nonrandomness or trends. If the model is adequate or the fit is good, the 
residuals should be randomly distributed in time. They were examined 
visually and by the runs (20) and mean square successive difference (21) 
statistical tests. Second, the residual variance about the regression was 
compared with the error variance of the experimental system (F-test) 
a knowledge of which was available from prior testing. However, in 
nonlinear regressions the residual variance is not an unbiased estimate 
of the pure error even when the model is correct, so this F-test is only 
approximate (16). 

Confidence Limits-In nonlinear regressions, exact confidence limits 
for the parameters are not available; however, the linear estimates cal- 
culated from the variance-covariance matrix and residual variance are 
often adequate approximations (16). A Monte Carlo method has been 
described (22) to test the accuracy of these linear approximations. This 
test involves the following steps: 

Estimate best-fit parameters and their approximate confidence 
limits; 
Generate data using the best-fit estimates and add normally dis- 
tributed random error with a variance equal to that of the original 
data set; 

3. Estimate best-fit parameters for the data set; 
4. Repeat steps 2 and 3 a number of times (15 has been used) and 

determine the confidence limits for the distribution of best-fit 
estimates. 

This analysis need not be carried out every time a particular model is 
run, but should be used to check the linear approximations a t  least once 
for each model. 

In this work, a relative truncation error of 

1. 

2. 

EXPERIMENTAL 

Materials-p -Nitrophenyl acetate (I) was prepared by acetylation 
of p-nitrophenol(23) and recrystallized from fractionated benzene and 
petroleum ether (40-60' fraction) mixed solvent to a constant melting 
point (77.6'). p-Nitrophenol was recrystallized to constant melting point 
(115') from fractionated benzene, and both materials were stored in 

Table IV-Parameter Estimates and Goodness of Fit Statistics 
fo r  Various Models Fitted to  Nonisothermal Second-Order 
Data * 

Model ka E Do D, Probability* 

Second 0.1004 15.09 1.001 0.0512 NS 
First 0.0739 -15.71 0.989 -0.1289 S 
Pseudo first 0.0737 -15.64 0.989 -0.1287 S 

S Zero 0.0711 -30.57 0.968 - 

a See Table I1 for parameter and constant values used to generate data over 90% 
reacted. * p = 0.001, S = significant, NS = not significant. 

vacuum desiccators in the dark until required for use. Thermal analysis 
indicated these samples to be greater than 99.9% pure. 

Concentrated hydrochloric acid' was diluted with glass distilled water 
to  produce sufficient dilute acid for all experiments. This acid was 
standardized against freshly dried sodium carbonate (analytical reagent 
grade) using methyl orange indigo carmine indicator (24). Replicate 
analyses (n = 4) indicated the acid to be 0.2396 M (SE mean = f0.0003 
MI. 

Equipment-A 1-liter, closed, stirred, glass reaction vessel was im- 
mersed in a 60 liter polyethylene glycol 600 bath. In isothermal experi- 
ments the temperature was controlled by a circulating heater2, while a 
variable speed programmer3 was used for nonisothermal tests. 

Temperatures inside the reaction vessel were monitored with a four- 
lead platinum resistance thermometer4. 

Samples were withdrawn automatically uia polytef tubing, cooled to 
32' in a jacketed coil, then passed into a 2-mm quartz flow-cell for 
spectrophotometric5 analysis. 

Analysis-The rate of hydrolysis was followed spectrophotometrically 
a t  318 nm (2). Spectra recorded during the reaction showed a single iso- 

1 .o 

0.8 

uI 0.6 
0 
2 
d 
53 
a 

m 
a 0.4 

0.2 

12 24 36 
10-3  SECONDS 

Figure 1-Typical temperature program (0) and reaction data ( 0 )  
with fitted curues for the nonisothermal acid catalysed (0.2396 M HC1) 
hydrolysis of I. The temperature time relationship determined by 
ORTHO was T(K) 303.911 + 0.904339 X t - 0.105973 x 10-8t2. 

Baker Analyzed Reagent, Baker Chemical Co. 
Model ED Unitherm. Gebruder Haake. 
Gebruder Haake Temperature Programmer, model PG12. 

Perkin-Elmer model 124 double-beam spectrophotometer. 
4 Degussa element, type P4. 
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Table V-Parameter Estimates and Goodness of Fit Statistics 
for  Various Models Fit ted to Nonisothermal Zero-Order Data 

Model ka E Do D ,  Probability* 

Zero 0.1004 14.95 1.000 - NS 
First 0.0019 15.19 1.000 -50.32 NS 
Pseudo first 0.0018 15.25 1.000 -53.40 NS 
Second 1 X 15.16 1.000 -252.0 NS 

0 See Table I1 for parameter and constant values. p = 0.001, NS = not signifi- 
cant. 

bestic point (292 nm) indicating a one-to-one reaction and stability of 
the absorbing product, p-nitrophenol. The final spectrum was identical 
with that of p-nitrophenol. 

A Beer-Lambert calibration, using replicate samples, confirmed linear 
concentration-absorbance relationships for I and p-nitrophenol, and that 
the component absorbances were additive. Since it was shown that 
spectra in acid and water were identical, this calibration was performed 
in distilled water, thereby minimizing decomposition problems. 

Procedure-One liter of acid was allowed to equilibrate thermally 
in the closed reaction vessel. About 80 mg of I dissolved in 2 ml of frac- 
tionated ethanol was added to produce an 4 .0004  M solution which was 
bubbled with high purity nitrogen. The temperature programmer was 
started when I was added and the first sample withdrawn 2 min later. 
Samples were withdrawn automatically, cooled to 32O, and assayed di- 
rectly, the concentrations used being such that the infinite time ab- 
sorbance was -1. At each sampling, reaction vessel temperature, sample 
absorbance, and time data were automatically recorded. 

Design-About 30 data were collected during each experimental run. 
Triplicate isothermal tests were performed a t  39.26, 49.03, 58.68, and 
68.24". Triplicate nonisothermal tests a t  each of four different approxi- 
mately linear heating rates (-3,6,12, and 18'/hr) were used. These all 
started a t  about 30' and continued until decomposition exceeded 90% 
giving a maximum temperature of about 76' (for 1 8 O / h r ) .  

RESULTS AND DISCUSSION 

Reparameterization of the Model-For first-order nonisothermal 
kinetics with a linear temperature program, exact simulated data were 
generated using parameter values of A = 1 X 1 O l o  min-*, E = 15 kcal/ 
mole, Do = 1, D ,  = 0, and T = 298.15 + t .  DO and D, were then held 
constant a t  their parametric values, while A and E were estimated. 
Convergence of the program was very slow, even for initial estimates close 
to the true values. 

Sum of squares contours for the data in question were generated and 
found to be very elongated in the direction of the A parameter. I t  has been 
pointed out (16) that in such cases, slow convergence of any iterative 
estimation procedure is likely. Clearly, A is an ill-determined parameter; 
that is, large changes in A cause small changes in SS. In retrospect, it is 
apparent why A is ill-determined. It is the rate constant a t  infinite tem- 
perature. Since data are usually collected in the range 25-90°, estimation 
of A involves an extrapolation outside the data, and such estimates are 
poorly determined. 

Conditioning can often be improved by reparameterizing the model. 
In the present study, this was done by replacing A with k, eEItRTJ in Eqs. 
11-14, where the new parameter k ,  is the rate constant a t  T,, a temper- 
ature within the experimental range. Sum of squares contours for various 
T, values were found to be well-rounded ellipses, i.e., the parameters were 
well-conditioned. Since little change occurs in the conditioning with 
changes in T,, provided it is within or near the experimental range, it may 
be advantageous to choose T, = 25". This would allow the room tem- 

Table VI-Kinetic Parameter  Estimates fo r  the Acid Catalysed 
Hydrolysis of I 

Source E f S E ,  kcal/mole 105k0 f S E ,  sec-l 

Nonisothermal* 16.98 f 0.03 1.904 f 0.010 
IsothermalC 17.00 f 0.04 1.912 f 0.009 
Reference 2d 21 f 2 1.9 f 0.4 
Reference 2e 18 
Reference 25f 2.054 
Reference 26g 17.2 

T, = 30'. Mean of 12 experiments. Least-square estimates based on 12 
experiments (three replicates at four temperatures). Their nonisothermal esti- 
mates, k. being calculated from their second-order rate constant at 25' using [H+] 
= 0.2396 M and E = 17.0 kcal/mole. Their isothermal estimate. f Determined from 
their second-order rate constant as above. g For phenyl acetate. 

1 .o 

0.8 

0.6 
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Figure %-Typical data for the isothermal acid catalysed (0.2396 M 
HCI)  hydrolysis of I showing the first-order, nonlinear, least-squares 
curve (0 )  and the more usual linearized logarithmic plot (0). D, from 
the nonlinear regression was used to calculate the fraction re- 
maining. 
perature rate constant to be estimated directly, and approximate confi- 
dence limits would also be immediately available. 

The new model was tried on the same first-order simulated data and 
convergence was rapid. A comparison of the new and old models for this 
typical data set, for differing initial estimates, is shown in Table I. In all 
cases the program converged to the parametric values and the new model 
was superior. Convergence was acceptable, since the initial estimates were 
far worse than normally would be expected. 

I t  is clear that  A may be of theoretical interest, but k, is of greater in- 
terest in practical stability studies and its use facilitates the numerical 
procedure. In all subsequent computations, the reparameterized models 
were used. 

Goodness of Fit-To test the ability to select the appropriate kinetic 
model, simulated data (40 pairs) were generated and normally distributed 
random error was added. The variance of the random error was that of 
the experimental system. The parameter estimates for zero-, first-, pseudo 
first-, and second-order fits to first-order data are given in Table I1 while 
the statistics for judging the goodness of f i t  are in Table 111. 

In all cases, -95% confidence limits of the first-order estimates 
bracketed the parametric values. This, along with the excellent agreement 
between the residual variances (about the regression) and error variance 
(Table 1111, indicated the program was functioning correctly. 

With the reaction 18% complete, the 95% confidence limits 
(-0.087-0.194) for the first-order estimate of k, bracketed the parametric 
value, but the point estimate is about half the parametric value. This 
shows the danger of estimating rate constants from data covering a low 
percentage reacted, and of the need to compute confidence limits. 

At high percentages reacted, the estimated E values for the zero-order 
model were negative. These values were expected, since the decrease in 
concentration causes a decrease in reaction rate for first-order kinetics; 
this is not accounted for in the zero-order model. Consequentiy, the re- 
action rate apparently decreased with temperature rise. 

From Table 111, it is clear that  a t  the added random error level the 
various kinetic models could not be distinguished below 18% decompo- 
sition. At 54% reacted the zero-order model was inadequate, a t  87% the 
second-order was inadequate, but the first- and pseudo first-order models 
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Table VII-Effect of Treating Do and/or D, as Constants on the Remaining Parameter Estimates 

D,, Absorbance Do, Absorbance f95% Confidence f95% Confidence lo6 Residual Variation, 
Row Units Units lo4 k., sec-' Unit, % E, kcal/mole Unit, % (absorbance units)* 

1 0.9825 0.1721 
2 I - CL" 0.1722 
3 I + C L  0.1720 

0.1897 
0.1896 
0.1899 

0.54 
0.47 
0.47 

4 0.9845 I1 - CL" 0.1912 0.38 

17.06 0.48 
17.08 
17.04 
16.96 

0.22 
0.22 
0.43 

0.16 
0.16 
0.16 
0.24 

i 0.980i I1 + CL 0.1882 0.39 17.16 0.43 0.24 . .___ 

6 I - C L  I1 + CL 0.1883 
7 I + C L  I1 + CL 0.1883 
8 I - 0.01 0.1729 0.1877 
9 I + 0.01 0.1713 0.1916 

0.38 
0.40 
0.94 
0.87 

17.13 
17.10 
17.36 
16.78 

0.20 
0.22 
0.45 
0.43 

0.24 
0.27 
0.61 
0.55 

10 I - 0.0i I1 0.1891 0.65 17.30 0.35 0.70 
11 I + 0.01 I1 0.1902 0.60 16.83 0.33 0.63 

a I and I1 are Row 1 estimates of D, and Dn. I - CL means D, was treated as a constant with value I minus the 95% confidence limit of a reading (0.0008 absorbance 
unit). 

remained indistinguishable, even at  99% decomposition. When the error 
variance was reduced by a factor of 10, the second-order model was then 
inadequate at 71% reacted, but the first- and pseudo first-order models 
were adequate. Attempts to separate these two models by increasing the 
temperature range to 60° while maintaining 90% reacted were unsuc- 
cessful. 

Second-order and zero-order data were generated using parameter and 
constant values given previously (Table 11) and covering 90% reacted with 
a temperature range of 20'. The parameter estimates and probabilities 
for second-order data are given in Table IV and for zero-order data in 
Table V. 

At 90% decomposition and at the random error level used, the sec- 
ond-order equation was the only adequate model (Table IV). The other 

-8.C 

-8.4 

-8.8 

- 
a 
c 
- 
- 

-9.2 

-9.6 

-10.0 

11 19 27 35 
105 - i/n 

Figure 3-Arrhenius plot for the acid catalysed (0.2396 M HCl) hy- 
drolysis of I ,  T, = 30'. Points cover the range of the experimental rate 
constants. 

models were shown to be inadequate by the statistical tests and the 
meaningless E estimates. 

The probabilities in Table V indicate that zero-order data can be de- 
scribed equally well by all models. Additionally, the kinetic parameter 
estimates (ha&) were reasonable for all models (although if prior stability 
information were available, the k, estimates from the incorrect models 
would be suspect). However, the D, estimates for the incorrect models 
were unacceptable, since absorbances of -50 and -252 are meaningless. 
Therefore, the first-, pseudo first-, and second-order models were rejected 
because of their D, estimates and the zero-order model was accepted by 
default and because it was not rejected by the statistical tests. 

For zero-order reactions, the rate increases continuously with time due 
to temperature rise and comes to an abrupt halt a t  zero concentration. 
For first-order, the rate increases initially but then decreases when the 
effect of lowered concentration exceeds that due to the increased k value. 
In second-order reactions, the decrease in rate occurs a t  a lower per- 
centage reacted since rate is proportional to concentration squared. 
Therefore, all models appear similar before the inflection points and, 
consequently, zero-order reactions covering a high percentage decom- 
position appear like first- and second-order reactions covering a small 
percentage reacted. From Table V, the 90% reacted zero-order model was 
adequately fitted by first- and pseudo first-order models covering -2% 
(D, - -50) or a second-order model with -0.5% decomposition (D, = 

Data from the nonisothermal hydrolysis of I, over -90% decomposition, 
were treated similarly. Graphs for a typical temperature program and 
reaction together with the ORTHO and MARQDT (pseudo first-order) 
fits are shown in Fig. 1. In all cases, zero- and second-order models were 
inadequate but the first- and pseudo first-order nonisothermal models 
were adequate. Pseudo first-order rate constants were estimated from 
isothermal data using nonlinear least-squares regression (J3q. 15). Plots 
of a typical data set and the fitted curve are shown in Fig. 2 along with 
the usual linearized graph. The rate constants were corrected for thermal 
volume expansion and then k, and E were estimated by linear least- 
squares regression using the logarithmic form of the reparameterized 
Arrhenius equation (Fig. 3). Nonisotbermal parameter estimates were 
in good agreement with isothermally determined values. These estimates 
are shown in Table VI with literature values. 

Confidence Limits-In all cases tested, the approximate confidence 
limits did not greatly exceed the Monte Carlo Iimits (usually only by a 
factor of <1.5). This indicates that the approximate error estimates cause 
less confident parameter estimates than is justified. However, in a 

-252). 

Table VIII-Variations in Parameter Estimates when Thermal 
Volume Expansion is Neglected 

Temperature Model 
Ranee Zero-Order Pseudo First-Order Second-Order 

20 0.09973 0.1002 0.1002 
40 0.09949 0.1004 0.1003 
60 0.09900 0.1007 0.1004 

ks 

E - - 
20 15.07 14.94 
40 15.09 14.92 
60 15.13 14.90 

14.96 
14.94 
14.93 

~ ~ 

a Exact nonisothermal simulated data were generated using: k. = 0.1, E = 15.0, 
DO = 1.0, D, = 0.05, a, = 1, a = 0, b = 1, T = 298.15 + t ,  and T, = 25' for various 
models incorporating the vof,me correction term. 

Journal of Pharmaceutical Sciences I 973 
Vol. 71, No. 9, September 1982 



practical sense, the differences were not large and errors caused by ac- 
cepting the approximate values would be safe. 

D,, and D, as Constants-The errors resulting from treating DO and 
D, as constants were investigated using a typical set of I data. Initially, 
all parameters (k,, E ,  DO, and D,) were estimated (row 1, Table VII) and 
the residual variance from this fit was used to obtain the 95% confidence 
limits of a reading. Variables DO and/or D ,  were then treated as constants 
and the remaining parameters were re-estimated from the data. Constant 
values for DO and D ,  were best estimates from the four parameter fit 
i 95% confidence limits of a reading (0.0008 absorbance unit). I t  is ac- 
ceptable that Do be determined to this precision, since for nonisothermai 
kinetics, the reaction initially proceeds slowly. However, determination 
of D ,  may involve time delays with instrument drift, mechanism changes, 
etc . ,  so an uncertainty of 0.01 absorbance unit would not seem unrea- 
sonable. Table VII shows the results of these refits. 

I t  is apparent that fixing DO and D ,  reduces the 95% confidence limits 
of E as expected, while those of k, are reduced except where the increase 
in residual variance outweighs the decrease caused by fixing Do and D ,  
(Table VII). In a practical sense it is unlikely that the decreases in 95% 
confidence limits would cause serious errors, but the inflated residual 
variances make the model suspect, making the choice of the appropriate 
reaction order difficult. 

Errors in k, and E estimates were quite small (0.16 and 0.23% range, 
respectively) when D ,  was treated as a constant in error by the 95% 
confidence limit of a reading (Rows 2 and 3 in Table VII), but similar 
errors in DO caused considerable biases in the estimates (1.6 and 1.2% 
ranges for k, and E, respectively). When the error in D ,  was increased 
to 0.01 absorbance unit, k, and E ranges were 2.1 and 3.4% in the worst 
case. These errors must be seen in light of the experimental precision and, 
hence, the approximate confidence limits. The 95% confidence limits for 
k ,  and 99% limits for E for Rows 4 and 5 and 8 and 9 in Table VII do not 
bracket the best (Row 1) estimates. That is, biased estimates resulted 
from using constant (incorrect) values for DO and D,. 

Thermal Volume Expansion-Comparison of the first- and pseudo 
first-order estimaks in Table I1 indicates that errors caused by neglecting 
thermal volume expansion are small for this model. However, to ascertain 
the magnitude of expected biases for all models, exact simulated data (no 
added random error) were generated. Data (40 pairs) covering 90% de- 
composition and temperature ranges of 20,40, and 60” were produced 
using reparameterized Eqs. 11,13, and 14. Parameters were re-estimated 
using these equations and again without the volume correction term 
Vz(t)].  In all cases where the complete equations were used, the estimates 
agreed (to 6 correct digits) with the parametric values. Errors caused by 
neglecting the volume correction are shown in Table VIII. 

The biases observed are quite small (eg., pseudo first-order, 40” range, 
biases are +0.4% in k, and -0.53% in E). These percentages varied little 
with parameter values (e.g., with k, = 0.01 and E = 30, the errors were 
+0.4% in k, and -0.3% in E). Assuming an error variance of 0.56 X 
the 95% confidence limits for the 40” pseudo first-order range are 50.61% 
for k, and f0.6470 for E. These limits bracket the parametric values. 

The bias in k, depended on the T, chosen. For To = 90°, the error was 
-1.9% but this increased error must be compared with the wider 95% 
confidence limits of f2.5%. Thus, the bias errors are relatively small. As 
seen previously, fits with and without volume correction terms (first- and 
pseudo first-order, Table 111) are equally good. Therefore, the need for 
a volume correction term was not evident from the experimental system, 
and justification for the term is theoretical (10). 

From a practical viewpoint it appears that failure to correct for volume 
expansion has a negligible effect on kinetic parameter estimates from a 
single data set; however, in the long term, slightly biased estimates will 
result and the inclusion of the term is warranted. 
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